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ABSTRACT

Lambert developed equations relating times of transit

between two points in space and the semimajor axis of conics

passing through these two points when the two radii and the

chord are given. Special types of problems can often best be

solved by alternate methods that have been developed, but

for a general study of connecting two points in space with a

conic section, with no special constraints other than time,

Lambert's equations seem to be best suited. This paper

represent'. an expository summary of the mathematical

methods and techniques involved.

*
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I. INTRODUCTION

Statement of Problem

Given two positions in space and their distances from

a central body, find an equation that relates time of transit

with a geometrical orbital parameter; namely the semi-

major axis. The solution to this problem is of interest in
1

orbit determination since knowledge of positions and times

are usually involved.

Kepler derived an equation which relates time from perifocal passage

with semimajor axis and eccentricity, given the eccentric anomaly of a point.

This equation is most often used to find the eccentric anomaly when time,

semimajor axis, and eccentricity are known (as is the case in ephemeris

prediction). It could be used in a "direct" solution, that is, finding the time,

given the other quantities (as is the case in finding the time of change of

phase in the patched-conic method of trajectory analysis).

ft Lambert studied the problem stated and found that by proper substitu-
tions in Kepler's equations he could eliminate the eccentricity and so de-

rive an equation relating time and semimajor axis when two radii and the

chord are given. Other methods of orbit determination have also been

developed, such as the Lagrange, Gauss, and Gibbs methods or combina-

tions and modifications of them. Which method to use for a given set of

known data is a long study in itself and beyond the scope of this paper.

Lambert's method is completely general and the mathematical method

remains valid for problems involving long arcs. Thus, for problems where

the length of the arc is unknown (and could be very long) this method is

extremely useful. However, for certain types of problems there is no doubt

that other methods can often be more efficient.

II. BASIC GEOMETRICAL RELATIONS

Given the attracting focus, there exist an infinite number of conic

sections passing through two given points in space. If in addition, a
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6
sernimajor axis is given, Table I shows the necessary and sufficient condi-

tions to classify the type of resulting conic sections.

Table 1. Classification of Conics.

If: Then:

4a > rd + ra + c 2 ellipses

4a = rd + ra + c I ellipse

4a < r d r a + c no ellipses

4a > c rd - r a  2 hyperbolas (concave branch)

4a < r d + r a - c 2 hyperbolas (convex branch)

Figures 1, 2, and 3 illustrate the elliptic cases, Figures 4 and 5 illustrate

the hyperbolic cases, and Figure 6 illustrates the parabolic case.

Parabolic and hyperbolic solutions are of interest for a) trajectories

to the moon, b) some satellite intercept problems, and c) trajectories of

some comets in the solar system.

III. DERIVATION OF LAMBERT'S EQUATION

Lambert's equation may be derived directly from Kepler's equation.

The basic formulae and substitutions involved are as follows: 2

r = a(l - e cos F) (1)
r d + r =a I - e cos I (F + F )cos I (F a  F d 0 (2)

d aL 2 a d 2 a d

or, if

2G =F + F
a

and (3)
2g = Fa - F d
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20
I I

.-- 2a - r0
S 2o -r.

Figure 1. Elliptic Case: 4a > rd + ra + c.
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.-
2 0 -rd -

I'-2o -r0

2o-(j

Figure 2. Elliptic Case: 4a rd + ra + c.
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2o-r 2aa rm

2o- a.4-..

Figure 3. Elliptic Case: 4a r d + r a+ c.
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-2 a-4

~- 2 a+rd
2a+r 0  -

Figure 4. Hyperbolic Case: 4a > c - r d - r.a
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T,6-r 2o-

I I I

.-- rad-2 -

i4F

Figure S. Hyperbolic Case: 4a < r d + r a -C.
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C6

Pab C

Figure 6. Parabolic Case.
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then

rd + r a = 2a (I - e cos G cos g) (4)

Similarly,

c 2  4a 2 sin 2 G sin2 g + 4a 2 (1 - e 2) Cos 2 G sin g (5)

from
2 2 r2

c = r d + r- 2 r r cos 0 (6)a da

Now let

cos h e cos G (7)
so that

c = 2a sin g sin h (8)

rd f r = 2a(1 - cos g cos h) (9)a

and let

6 h-(10)

or

a d 
( 1 1 )

cos . (€ + 6) :e cos ~- (a + Fd)

then

21
r d  + r a  + c = 4a sin 2 1 4(12)

r + r - c = 4a sin 2  6 (13)d a 7
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and substituting in Kepler's equation

ntf = F a - Fd - e(sin F a - sin Fd) (14)

we obtain

ntf = (c - sin 1)- (6 - sin 6) (15)

which is Lambert's equation.

Since we may assume that Fa - F d < 2r, it follows that 0 < (1/2)( - 6)

.. Tr and 0 (1/) ( + 6) <Tr, so that 0 < (I/2) ( < ir and -(1/2) 7r

< (1/2)6 < (1/2)w. Hence Lambert's equation has four possible solutions;

that is, combinations of each of the two solutions for c and 6. Let I

and 6 be their smallest positive values. Then the four solutions are:

Case IA ntf = ( 1 - sin c 1) - (61 - sin 61) (16)

Case 2A ntf = (C I - sin e ,) (6 , - sin 61) (17)

Case IB ltf = 2r - (1 - sin .,1)- (61 - sin61) (18)

Case 2B ntf = 2r - (cI - sin f1) 1 (6 1 - sin 6
1 ) (19)

which correspond to the four possible times of transfer between the two

points in the ellipses of Figure 1.

Call 9 the angle measured counterclockwise from rd to ra. Then

Table 2 indicates whether the motion is direct or retrograde.

Table 2. Direction of Motion, Elliptic.

and/if 0 < < Z<r >>i

Case IA Direct Retrograde

Case ZA Retrograde Direct

Case lB Direct Retrograde

Case ZB Retrograde Direct

I



Page 11

The equations corresponding to motion along the concave branch of a

hyperbola are developed in the same fashion except for the use of hyperbolic

in place of trigonometric functions:

r a(e cosh F - 1) (20)

( -6) = (Fa Fd)

(21)

cosh ( , 6) e cosh . (F + F
72 a d'

21

rd f r + c = 4a sinh 7 (22)

rd fr -c = 4a sinh 16 (23)

ntf e(sinh F a sinh Fd) (F a -Fd) (24)

and finally

ntf = (sinh - ) - (sinh 6 - 6) (25)

The above equations show that E is always positive. Furthermore if the

angle 0, as defined above, is less than v then 6 > 0 and if 0 > w, then

6 <0. Therefore two cases exist for hyperbolic motion:

Case IC ntf = (sinh E - ) - (sinh 6 -6) (26)

Case 2C ntf = (sinh i - i) + (sinh 6 - 6) (27)

and Table 3 tabulates the direction of motion:

Table 3. Direction of Motion: Hyperbolic.

and/if 0 <8 ef 2w >@ >

Case IC Direct Retrograde

Case 2C Retrograde Direct

I
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Since motion along the convex branch of a hyperbola is of no practical

interest it may properly be omitted.

The equation for motion along a parabola was found by Euler, and for

completeness it will be included here. Euler's equation follows from Baker's

equation 3 (the counterpart of Kepler's equation for a parabola):

F /1 ( T tan - tan 3 2 (28)
q

Also, for a parabola,

r = q s c c q (I + tan2 (29)

so that

rd + r q(2+ tan2 Vd +tan 2 (30)

and the equation for the chord becomes g
2-=2 -2 v V aV dc (rd + ra ) 4 rd r a cos 2 (31)

or (Vd -v)

Zco rd + ra + c)(rd + r - c) (32)

vd  v a (r d + r + c)(r d + r - c)
I + tan 7- tan (33)

2q

so that

S(dra+ (rd + ra - c)T 2 r d + ra + c)(rd + ra c

2q

tan a - tan d34)

C
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0
or

+ a+c)+uI"r + r - c)" V vd

d a a tan a- tan d (35)

Using equation 28 to find the time of flight between two points in the orbit

gives
4T tf a_ d + ( 3 a  3 d (6

F q 3/2 - tn - tan -"+ 3 ( tan 3 " - tan 3  ) (36)

which can also be written as,
,1itf ( v V__dVd)[( Vd " )( Va VA. 2I

'4 T 3/f " tan - tan )[ 3 1 + tan "- tan v a+ tan -- - tan v) 2

(37)

Substitution from equations 33 and 35 yields
3/2 -13/2

6 4'tf = (rd + ra + c) 3/2 (rd + ra - c) (38)

where for direct orbits the upper sign, Case ID, is used if 0 " w and the

bottom one, Case ZD, if 0 > f. The signs are reversed for retrograde orbits.

Table 4. Direction of Motion: Parabolic.

and/if 0 < W 0 > W

Case ID Direct Retrograde

Case 2D Retrograde Direct

IV. APPLICATIONS

As previously mentioned, primary applications of Lambert's equations

are in preliminary orbit determination and parametric studies of transfer

orbits. This application involves the solution of transcendental equations

I
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6
and the problem is further complicated by the many equations which are

involved (equations 16 through 19, 26, 27, and 38). The most practical

method for choice of equations to be solved is presented by Breakwell 4

and involves a test on time.

Breakwell's parameters are: a unitless time

2ir tf

T (9)
S

where P =period of elliptic orbit with semimajor axis s/2; a unitless

energy

E = energy of transfer orbit (40)
E

where E s = energy of elliptic orbit with semimajor axis s/2; and a unitless

linear scale

K : -(41)
s

where

s + r c) (42)
2 (rd a

A plot of E versus T for a Kf0.8 is-schematized in Figure 7. When

E = 0 and E = -1, expressions for T in terms of K are easily obtained

and become landmarks:

TIA '- ) (43)

T2 A ± (I + K3/ 2 ) (44)
TZA = 2{ (46)
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JIC 2C

TIA TA

Too Tan

Figure 7. Energy Versus Time.
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A study of Figure 7 leads to Table 5 which together with Tables I through

4 allows the choice of the proper equation to be used and determines, with-

out further solving the problem, the direction of motion for each case.

Table 5. Classification of Cases According to Time.

If tf is Then Use Case

< TIA 1C
2C

TIA ID (parabola - no "solution" necessary)

> T2B 1B

2B

= T2A 2D (parabola - no "solution" necessary)

> TIA. <T IA

2C

T 2 A TIB T 1 1, <TZA lB

2C

"T2A, < T2B 2A
1B

lBm

TIA. <T2A IA

2C

T2A <TIB TZA, <TIB IA

ZA

TIB, <T 2 B 2A

1B

The case of nearly parabolic motion, either from the elliptical or hyperbolic

side presents some difficulties. Such cases have been solved by Lancaster 5

where the elliptic (or hyperbolic) equations are replaced by series expansions

which converge rapidly for nearly parabolic motion:
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t
Case INP T = - (-I). .3.5... (2 n - ) (- 3 - Kn+3/2

CaseINP z -2.~n-2 2n + 3 (-
nO 2 (47)

W(- I) (-E) n  n+3/2
Case 2NP T =- 3- (I + Kl=02 n - 2 n' 2n + 3 (8

2 :0(48)

Table 4 will still give the direction of motion, where Case INP would replace

Case D and Case 2NP would replace Case 2D.

Equations (47) and (48) could be inverted but they can be used with

iteration is they stand to solve for E when T is given. The previous tables

are summatriyed in Tables 6 and -.

Table 6. Summary of Cases.

If Then Use Came Equation

tf - TIA - ATI IC (26)
2C (27)

TIA - AT I <t f' TtA + AT 2  INP (47)

TZA - AT3 - tf TZA + AT 4  2NP (48)

TIA + AT, <tfs TIB IA (16)

2C (26)
T2 A >TIB TIB <tf < TzA - ATl IB (18)

2 C (27)
T 2 A + AT 4 <tf" T2B ZA (17)

lB (18)

TIA + AT2 <tf< T2A - IA (16)
2C (27)

TZA < TIB TZA + AT 4 <tf I TIB IA (16)

ZA (17)

TIB <tf TZB 2A (17)
tB (18)

tf > TZB lB (18)
2B (19)

I
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Table 7. Summary of Direction of Motion.

and/if Q < 180 Cr > 180

Case IC Direct Retrograde

2C Retrograde Direct

INP Direct Retrograde

2NP Retrograde Direct

1A Direct Retrograde

2A Retrograde Direct

I AB Direct Ret rograde

2AB Retrograde Direct

1B Direct R et rog rade

2B Retrograde Direct

Expressions for AT 1 , AT 2 , AT 3 and AT 4 are not yet available. In

practice an iterative scheme can be used which would "jump" from Cases

NP to C or NP to A and proceed to the answer.

Another case which may not be of practical use is when E approaches

zero from the 1B or 2B expressions; that is, T approaches infinity. These

are taken care of by the following series:

2r + (-I).1.3.5...(2n - 1) (-E)n (I + Kn 4 3 / 2

(4- IL 2nZn +3/3Case I BP T =+ 2n+2n-2 (n +K
( -E)3  n . (49)

Case 2BP T =(-). -35...(2n 1) (-E)n  (l - Kn+ 3 / 2

2E)3  n' n' Zn + 3 (50)

A relatively simple computer program can be developed which would

solve all the above cases in a unified iterative procedure.

The above study is limited to one revolution of the transfer orbit. For

more than one revolution all that is required is to add ZNw to the right hand

side of the equations to be solved (where N = number of complete revolutions
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0
of the transfer orbit). This may bring in some additional numerical

difficulties in the solutions which in turn may produce more special cases.

Such cases have yet to be studied.

V. ORBITAL ELEMENTS

Once "a" has been obtained from the solution of Lambert's equations,

the rest of the orbital elements may be easily found. For elliptic orbits

(ra - a) - (rd - a) cos (( - 6)
ea sin Fd sin (c - 6) (51)

ca cos Fd = a - rd (52)

which gives the eccentricity. Then

Md = F d - e sin F d  (53)

T t t d (54)
T~d n

where

n (55)ja 13/2

thus obtaining the time of perifocal passage. To find the angular elements,

the cartesian coordinates or the direction cosines of the two positions must

be known.

os i -- z (56)
L 2 + L 2 + L 2

x y z

L
sin i sin x (57)L 2 + L 2 + L 2

x y z

B
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-Sill i Cos 0 y (58)
L 2  L 2 L 2

x y z

where
Lx yt 'l2 - 'I YZ.

L z I x2 - x 1 Z2 (59)

Xl Y2 vY1 x}

and 0 < i 5 Tr/2 for direct orbits and 1T/2 < i -T for retrograde orbits.

Finally, the argument of perifocus, w, is:

W = u 1 - 1  (60)

rd

- Cos vd  cos F - e (61)
a d d

rd

- V sinvd - it-el sin Fd (62)

where vd and ud may be obtained from

rd Cos Ud = xd Cos5C + Yd sin C1 (63)

rd sin ud = - xd cos i sin +yd cosi cos+zdsin if

For hyperbolic orbits, the following substitutions will suffice

i. Use hyperbolic functions for the eccentric anomaly (remember

that sin - sinh)

2. Md  F df e sinh Fd

For parabolic orbits

a co

e I
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and for time of perifocal passage use Baker's equation:

Vd 1 3 Vd

M tan d 1- -tan 3 (64)
d 2 3 (4

where
Lv r dvd cosT raVd ra"

tan- 2 - AV
sin 2

(0 5 < Tr) (65)Avv

7-va r
tan AV

sin-

2

(Av = +0 for direct orbits

Av = -0 for retrograde orbits)

and choose vd such that va - vd = Av. Thus, obtain q from

rd q + tan 2 -- (66)

and finally, T, from

4 (t/d T) M (67)

The angular elements are obtained as for ellipses and hyperbolas.
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NOMENC LATURE

;a senin.iajor axis

c magnitude of chord between two rgdii

C ec cen ricity

E energy ratio

F eccentric antomaily

i incliiation of orbit plane to re'fe p(it 11lL

K see e.ju;,tion 4 1
Mv II1 d/ Iia oI t~li l ,

I1 lnCIn va lt ion

P period

q radius to perifocus

r mI;iinitlt le of radiu, vt.t or

S senip, eri nete r

t time

T time raiti

Vtr il minomilv

6 varial)e in Lambert 's Equ;ation (see equattions 12 and 22)

varial)le in Lamnbert', Equ,ation (see equat ions Hi and Z3)

a cent rail ;intlh between the two radii a1,w y is nceisured counterclockwise

fromi r to rIt reia rdi.,. of direction of motion

i travit;tiun aind im;ss factor

T timec of perifocl passage

lonuitude (or right ascension) of the node

w a rumnent of perifo(u5s

Subi nrlx

(I dep;, rt rc

;I Irriv.l

f flight
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